sábado, 30 de abril de 2016


Definición 

Una computadora electrónica, según el Diccionario de la Real Academia Española, es una: Máquina electrónica, analógica o digital, dotada de una memoria de gran capacidad y de métodos de tratamiento de la información, capaz de resolver problemas matemáticos y lógicos mediante la utilización automática de programas informáticos.

De aquí se deduce  que la computadora personal es una computadora electrónica de dimensiones reducidas, con limitaciones de capacidad de memoria y velocidad, pero con total autonomía.





Desde el inicio de la humanidad el hombre ha buscado la manera de crear herramientas que le permitan realizar tareas de una forma más fácil y eficiente, lo que le ha llevado a estar en constante invención e innovación para proveer día a día herramientas más útiles, más rápidas, más capaces, etc. Con el fin de ayudarle a simplificar las tareas y realizar el mayor número de ellas en el menor tiempo posible. Es así como el día de hoy hemos llegado a la época en que “todo está al alcance de un click” a través de la poderosa herramienta denominada Internet. Pero esto no sería posible si hoy en día no existiera una de las mejores invenciones creadas por el hombre: La computadora. Elorigen de las máquinas de calcular está dado por el ábaco chino, éste era una tablilla dividida en columnas en la cual la primera, contando desde la derecha, correspondía a las unidades, la siguiente a la de las decenas, y así sucesivamente. A través de sus movimientos se podía realizar operaciones de adición y sustracción. Otro de los hechos importantes en la evolución de la informática lo situamos en el siglo XVII, donde el científico francés Blas Pascal inventó una máquina calculadora.

Ésta sólo servía para hacer sumas y restas, pero este dispositivo sirvió como base para que el alemán Leibnitz, en el siglo XVIII, desarrollara una máquina que, además de realizar operaciones de adición y sustracción, podía efectuar operaciones de producto y cociente. Ya en el siglo XIX se comercializaron las primeras máquinas de calcular. En este siglo el matemático inglés Babbage desarrolló lo que se llamó "Máquina Analítica", la cual podía realizar cualquier operación matemática. Además disponía de una memoria que podía almacenar 1000 números de 50 cifras y hasta podía usar funciones auxiliares, sin embargo seguía teniendo la limitación de ser mecánica. Recién en el primer tercio del siglo XX, con el desarrollo de la electrónica, se empiezan a solucionar los problemas técnicos que acarreaban estas máquinas, reemplazándose los sistemas de engranaje y varillas por impulsos eléctricos, estableciéndose que cuando hay un paso de corriente eléctrica será representado con un *1* y cuando no haya un paso de corriente eléctrica se representaría con un *0*. Con el desarrollo de la segunda guerra mundial se construye el primer ordenador, el cual fue llamado Mark I y su funcionamiento se basaba en interruptores mecánicos. En 1944 se construyó el primer ordenador con fines prácticos que se denominó Eniac.
En 1951 son desarrollados el Univac Iy el Univac II (se puede decir que es el punto de partida en el surgimiento de los verdaderos ordenadores, que serán de acceso común a la gente).





1° Generación: se desarrolla entre 1940 y 1952. Es la época de los ordenadores que funcionaban a válvulas y el uso era exclusivo para el ámbito científico/militar. Para poder programarlos había que modificar directamente los valores de los circuitos de las máquinas.

 2° Generación: va desde 1952 a1964. Ésta surge cuando se sustituye la válvula por el transistor. En esta generación aparecen los primeros ordenadores comerciales, los cuales ya tenían una programación previa que serían los sistemas operativos. Éstos interpretaban instrucciones en lenguaje de programación (Cobol, Fortran), de esta manera, el programador escribía sus programas en esos lenguajes y el ordenador era capaz de traducirlo al lenguaje máquina.

3° Generación: se dio entre 1964 y 1971. Es la generación en la cual se comienzan a utilizar los circuitos integrados; esto permitió por un lado abaratar costos y por el otro aumentar la capacidad de procesamiento reduciendo el tamaño físico de las máquinas. Por otra parte, esta generación es importante porque se da un notable mejoramiento en los lenguajes de programación y, además, surgen los programas utilitarios.

4° Generación: se desarrolla entre los años 1971 y 1981. Esta fase de evolución se caracterizó por la integración de los componentes electrónicos, y esto dio lugar a la aparición del microprocesador, que es la integración de todos los elementos básicos del ordenador en un sólo circuito integrado.

5° Generación: va desde 1981 hasta nuestros días (aunque ciertos expertos consideran finalizada esta generación con la aparición de los procesadores Pentium, consideraremos que aun no ha finalizado) Esta quinta generación se caracteriza por el surgimiento de la PC, tal como se la conoce actualmente.






Indudablemente la evolución vertiginosa de la tecnología nos lleva a imaginar a donde llegares en los próximos años en el desarrollo de los computadores, por supuesto de la mano de toda la tecnología en general, aquí se plasman algunos indicadores sobre esto.


Computadoras quánticas.



En 1965, el presidente emérito y cofundador de Intel, Gordon E. Moore- ideólogo de la ley-, se da cuenta de que el número de transistores que contiene un microchip se duplica aprox. Cada año pero, esta progresión no es infinita.
La miniaturización de circuitos tiene un límite ya que el reducir tanto su tamaño hace que produzcan demasiado calor. Por otra parte, a la escala nanométrica entran las leyes de la física cuántica al juego, en la que los electrones se comportan de una manera probabilística.
Entre algunos Físicos en 1982 empezó a gestarse una idea que parecía descabellada: construir una computadora quántica, una maquina capaz de aprovecharse de las particulares leyes físicas del mundo subatómico para procesar a gran velocidad ingentes cantidades de datos y, en definitiva, hacer que las supercomputadoras actuales parezcan simples ábacos.
A diferencia de las computadoras personales que han sido diseñadas para que trabajen con información en forma de bits una computadora básica usa bits quánticos o qubits, capaces de registrar unos y ceros a la vez. Esto lo logran gracias a la una de las premisas fundamentales de la mecánica quántica: la sobreposición, que indica que a escalas ínfimas un único objeto puede tener al mismo tiempo dos propiedades distintas o pueda estar en dos sitios a la vez. De esta forma la velocidad de cálculo aumenta enormemente.


Computadoras Ópticas.


Kevin Homewood está al frente de un grupo de expertos de la universidad de Surrey, Inglaterra, que cree que la clave se encuentra en la luz. Según estos investigadores, es factible construir un dispositivo óptico de computación que se aproveche de la velocidad luz y de su gran capacidad para transportar información. El problema al que se han enfrentado estos científicos es que el silicio es con el que se fabrican microchips normalmente emite energía calorífica, no luminosa. Para superarlo Homewood y sus colegas construyeron trampas a escala atómica en el interior del silicio donde consiguieron atrapar electrones y forzarlos a liberar energía lumínica. A parte de miniaturizar los chips y hacerlos más eficientes este prototipo podrá funcionar a temperatura ambiente.

Computadoras basadas en el ADN.

California Leonard Adleman sorprendió a la comunidad científica al solventar esta cuestión utilizando una pequeña gota de un líquido que contenía ADN. Adleman ideo un método de plantear el problema a partir de bases enfrentadas que forman hebras de la molécula del ADN: A, C, T y G, las letras del abecedario genético. De esta forma, utilizando los mismos patrones químicos que permiten que las bases se unan de una forma específica se identifico la solución correcta en un tiempo record: había nacido la computadora de ADN.
Y no es algo para tomarse a la ligera, pues cada centímetro cúbico de ADN contiene mas información que un billón de CD's. Pero, a pesar de que tiene esta memoria masiva y de que las computadoras de ADN utilizarían una cantidad mínima de energía para funcionar, aun se desconoce como hacer una maquina útil capaz de aprovechar todas estas ventajas.

Computadoras Neuroelectrónicas.


En el instituto Maxplanck de bioquímica, cerca de Munich, el profesor Peter Fromherz y sus colaboradores han conseguido hacer que el silicio interactué con tejidos vivos. Esta tecnología, conocida como neuroelectrónica, abre una vía de comunicaciones entre computadoras y células. El primer “neurochip” ha consistido en fusionar y hacer que trabajen juntos un microchip y las neuronas de un caracol. En el futuro, gracias a esta tecnología, podrían lograrse implantes que como una neuroprótesis capaces de sustituir las funciones del tejido dañado del sistema nervioso.








No hay comentarios:

Publicar un comentario